**This is an old revision of the document!** ----
Readings are sections in Zill First Course in Differential Equations with Modeling Applications, 10th edition. If you use another text, look up the lecture topic in the table of contents or index. Lectures without a specified topic are buffers for the inevitable lag. Homeworks are listed on their due dates. Please refer to policies for specifics on handing in homeworks, exam procedures, etc. <code> date lecture reading homework FIRST-ORDER DIFFERENTIAL EQUATIONS W 01/22 intro, definitions 1 F 01/24 separable eqns 2.2 M 01/27 1st order linear 2.3 W 01/29 exact equations 2.4 HW1 F 01/31 M 02/03 substitutions 2.5 W 02/05 examples HW2 F 02/07 review M 02/10 EXAM #1 HIGHER-ORDER DIFFERENTIAL EQUATIONS (linear, and mostly 2nd order) W 02/12 motivation, terminology F 02/14 y=exp(lambda t) M 02/17 Euler formula 4.3 W 02/19 F 02/21 judicious guessing (undet. coeff) 4.4 M 02/24 4.6 HW3 W 02/26 variation of parameters F 02/28 M 03/03 HW4 W 03/05 EXAM #2 F 03/07 boundary value problems (spring break) LAPLACE TRANSFORMS M 03/24 definition, inverse transforms 7.1-2 W 03/26 derivatives, solving ODEs F 03/28 s-translation 7.3.1 M 03/31 t-translation (Heaviside func) 7.3.2 HW5 W 04/02 F 04/04 Dirac delta function 7.5 M 04/07 periodic funcs 7.4.3 HW6 W 04/09 convolution F 04/11 M 04/14 EXAM #3 SERIES SOLUTIONS W 04/16 power series review 6.1.1 F 04/18 solutions about ordinary points 6.1.2 M 04/21 regions of convergence W 04/23 matrices and vectors ApII.1 HW7 F 04/25 Ax=b, determinants M 04/28 ODEs in matrix form, eigenvalues 8.1 W 04/30 real eigenvalues, distinct 8.2.1 HW8 F 05/02 real eigenvalues, repeated 8.2.2 M 05/05 complex eigenvalues 8.2.3 </code>