====== FieldSymmetry ====== The FieldSymmetry class represents the symmetry group of FlowFields. Specifically, the periodic in x,z and polynomial in y expansions inherent in FlowFields allow the follow symmetries <latex> $ \begin{align*} [u,v,w](x,y,z) &\rightarrow [-u,-v,-w](x,y,z) \\ [u,v,w](x,y,z) &\rightarrow [-u, v, w](-x,y,z) \\ [u,v,w](x,y,z) &\rightarrow [ u, -v, w](x,-y,z) \\ [u,v,w](x,y,z) &\rightarrow [ u, v, -w](x, y,-z) \\ [u,v,w](x,y,z) &\rightarrow [ u, v, w](x+\ell_x, y, z+\ell_z) \end{align*} $ </latex> Let G be the group generated by these symmetries. Specific choice of boundary conditions at the walls might constrain the symmetry group of a specific flow to a subgroup G. But for generality,the FieldSymmetry class can represent any symmetry in G. The FieldSymmetry class parameterizes symmetries σ ⊂ G symmetries as follows. Any element of the symmetry group is defined by six parameters <latex> $ \begin{align*} \sigma &= (s_x, s_y, s_x, a_x, a_z, s)\\ s_x, s_y, s_z, s &= \pm 1\\ a_x, a_z &\in [-0.5, 0.5) \end{align*} $ </latex> with the action of σ on a velocity field u as <latex> \sigma [u, v, w](x,y,z) = s (s_x u, s_y v, s_z w)(s_x x + a_x L_x, s_y y, s_z z + a_z L_z) </latex> The following is a brief overview of FieldSymmetry functionality. For a complete description, see the header file {{:librarycode:symmetry.h}}. ===== Constructors / Initialization ===== In C++ code, elements of the symmetry group can initialized as follows, where %%sx,sy,sz%% are of type %%int%% and %%ax, az%% are of type %%Real%%. <code c++> FieldSymmetry sigma0(sx, sy, sz, ax, az, s); FieldSymmetry sigma1(sx, sy, sz, ax, az); // the s argument s defaults to 1 FieldSymmetry sigma2(sx, sy, sz); // s defaults to 1; ax,az to 0 FieldSymmetry tau(ax, az); // pure translation: s,sx,sy,sz default to 1 FieldSymmetry identity; // the identity: s defaults to 1; ax,az to 0; sx,sy,sz to 1 </code> ===== Operations ===== FieldSymmetries act on each other and velocity fields as follows <code c++> FieldSymmetry sigma4 = sigma2 * sigma1; // group multiplication sigma4 *= sigma3; // sigma4 now equals sigma3*sigma2*sigma1 ---note order! FlowField u("u"); // read velocity field u from disk FlowField v = sigma1 * u; // Make new field v = sigma1 u v *= sigma2; // v now equals sigma2 * sigma1 * u </code> FieldSymmetries can be saved to / read from disk... <code c++> sigma1.save("sigma1"); // saves to ASCII file sigma1.asc FieldSymmetry sigma7("sigma1"); // make a new symmetry element sigma7 == sigma1 </code> ...compared to each other... <code c++> if (sigma1 != identity) ... else if (sigma1 == sigma7) ... </code> ===== ASCII IO ===== ==== FieldSymmetry ==== The FieldSymmetry uses ASCII input-output. The storage format is s sx sy sz ax az Thus, the following C++ channelflow code <code c++> FieldSymmetry sigma(-1, -1, -1, 0.3, 0.1); sigma.save("sigma"); </code> produces the ASCII file ''sigma.asc'' with contents 1 -1 -1 -1 0.3 0.1 which can then be read back into a channeflow program with <code c++> FieldSymmetry sigma("sigma"); </code> Note that the order of parameters in the ASCII file is different than the order in the ''FieldSymmetry'' constructor: the overall multiplicative sign ''s'' goes first in the file and last in the C++ constructor. I apologize for this. The reasons for the difference are are historical. The next release of channelflow will have order (s, sx, sy, sz, ax, az) for both. ==== SymmetryList ==== The ''SymmetryList'' class is a essentially an array of ''FieldSymmetry'' objects with simple ASCII IO methods. The ASCII format is % N s0 sx0 sy0 sz0 ax0 az0 s1 sx1 sy1 sz1 ax1 az1 ... where N is the number of symmetries listed in the file. Thus the file ''S.asc'' with contents % 2 1 1 1 -1 0.5 0.0 1 -1 -1 1 0.5 0.5 represents the symmetries σ0 = (1, 1, 1, -1, 0.5, 0.0) and σ1 = (1, -1, -1, 1, 0.5, 0.5). These are the generators of the S [[docs:math:symmetry#isotropy_groups_of_known_solutions|S symmetry group]]. The generators can be loaded into channelflow, used, and saved as follows <code c++> SymmetryList S("S"); // load generators from ASCII file FlowField foo = S[0](u); // apply (1, 1, 1, -1, 0.5, 0.0) to u FlowField bar = S[1](u); // apply (1, -1, -1, 1, 0.5, 0.5) to u S.save("Q"); // save generators into another file SymmetryList P(4); // Create another symmetry group P[0] = FieldSymmetry(1,1,1, 0.2, 0.0); P[1] = etc.; </code>