<code> findorbit: Newton-Krylov-hookstep search for (relative) equilibrium or periodic orbit options : -eqb --equilibrium search for equilibrium or relative equilibrium (trav wave) -orb --periodicorbit search for periodic orbit or relative periodic orbit -rel --relative search for relative periodic orbit or relative equilibrium -T --maptime <real> default == 10 initial guess for orbit period or time of eqb/reqb map f^T(u) -es --epsSearch <real> default == 1e-13 stop search if L2Norm(s f^T(u) - u) < epsEQB -ek --epsKrylov <real> default == 1e-14 min. condition # of Krylov vectors -edu --epsDuLinear <real> default == 1e-07 relative size of du to u in linearization -edt --epsDtLinear <real> default == 1e-07 size of dT in linearization of f^T about T -eg --epsGMRES <real> default == 0.001 stop GMRES iteration when Ax=b residual is < this -egf --epsGMRESfinal <real> default == 0.05 accept final GMRES iterate if residual is < this -cd --centerdiff centered differencing to estimate differentials -Nn --Nnewton <int> default == 20 max number of Newton steps -Ng --Ngmres <int> default == 40 max number of GMRES iterations per restart -Nh --Nhook <int> default == 20 max number of hookstep iterations per Newton -d --delta <real> default == 0.01 initial radius of trust region -dmin --deltaMin <real> default == 1e-12 stop if radius of trust region gets this small -dmax --deltaMax <real> default == 0.1 maximum radius of trust region -df --deltaFuzz <real> default == 0.01 accept steps within (1+/-deltaFuzz)*delta -lmin --lambdaMin <real> default == 0.2 minimum delta shrink rate -lmax --lambdaMax <real> default == 1.5 maximum delta expansion rate -irq --improveReq <real> default == 0.001 reduce delta and recompute hookstep if improvement is worse than this fraction of what we'd expect from gradient -iok --improveOk <real> default == 0.1 accept step and keep same delta if improvement is better than this fraction of quadratic model -igd --improveGood <real> default == 0.75 accept step and increase delta if improvement is better than this fraction of quadratic model -iac --improveAcc <real> default == 0.1 recompute hookstep with larger trust region if improvement is within this fraction quadratic prediction. -Tsc --Tscale <real> default == 20 scale time in hookstep: |T| = Ts*|u|/L2Norm(du/dt) -tc --dudtConstr <bool> default == true require orthogonality of step to dudt -os --orthoScale <real> default == 1 rescale orthogonality constraint -sf --symmfile <string> file containing T,su,sx,sy,sz,ax,az -sx --x-sign change u,x sign -sy --y-sign change v,y sign -sz --z-sign change w,z sign -ax --axshift <real> default == 0 translate by ax*Lx -az --azshift <real> default == 0 translate by az*Lz -a --anti antisymmetry instead of symmetry -rs --relativeScale <real> default == 1 scale relative-search variables by this factor -xc --dudxConstraint <bool> default == true require orthogonality of step to dudx and dudz -b --l2basis use an explicit L2 basis -s1 --s1 restrict to s1-symmetric subspace -s2 --s2 restrict to s2-symmetric subspace -s3 --s3 restrict to s3-symmetric subspace -sigma --sigma <string> file containing symmetry of relative eqb/orb -symms --symmetries <string> constrain u(t) to invariant subspace generated by symmetries in listed file, arg is filename -R --Reynolds <real> default == 400 Reynolds number -vdt --variableDt adjust dt to keep CFLmin<=CFL<CFLmax -dt --timestep <real> default == 0.03125 (initial) integration timestep -dtmin --dtmin <real> default == 0.001 minimum timestep -dtmax --dtmax <real> default == 0.04 maximum timestep -dTCFL --dTCFL <real> default == 1 check CFL # at this interval -CFLmin --CFLmin <real> default == 0.4 minimum CFL number -CFLmax --CFLmax <real> default == 0.6 maximum CFL number -ts --timestepping <string> default == SBDF3 timestep algorithm: See README. -nl --nonlinearity <string> default == Rotational nonlinearity method: See README. -cp --coutprec <int> default == 6 precison for std output -p --pausing pause between Newton steps -o --outdir <string> default == ./ output directory <flowfield> (trailing arg 1) initial guess for Newton search </code>