User Tools

Site Tools


gibson:teaching:spring-2018:math445:lab2

====== Differences ====== This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
gibson:teaching:spring-2018:math445:lab2 [2018/01/30 02:36]
gibson created
gibson:teaching:spring-2018:math445:lab2 [2018/01/31 16:07] (current)
gibson [Part 3: Plots]
Line 1: Line 1:
-====== Math 445 lab 2: vectors, ​plotting, scripts======+====== Math 445 lab 2: vectors, ​plotsand scripts======
  
-Do the following in Matlab, saving your work to a file with the ''​diary''​ command, and labeling each problem with a Matlab comment (e.g. ''​% problem 1''​). Reduce unnecessary whitespace with the ''​format compact''​ command. When you're done, edit the diary file to eliminate errors, so that your diary shows just the correct work. You do not need to turn in the plots of 12, 13, and 14. Just describe them verbally using Matlab comments. For 15, just provide your estimates of the zeroes of the polynomial. ​ Turn in your diary file on Canvas+Do the problems for parts 1 and 2 at the Matlab ​prompt, saving your work to a file with the ''​diary''​ command.
  
-1. Assign ​row vector ​with elements 34, 5, 9 to the variable u.+Be kind to your teaching assistant! 
 +  * Label each problem with a Matlab comment (e.g. <​nowiki>​% ==== Problem ​====</​nowiki>​) 
 +  * For questions with free-form response, write your answer as Matlab comment. Write in complete sentences! 
 +  * Reduce unnecessary whitespace ​with the ''​format compact''​ command.  
 +  * When you're doneedit the diary file to eliminate errors, so that your diary shows just the correct work. 
 +  * Add and subtract blank lines as necessary to make your work organized and easiy readable
  
-2. Assign the transpose of u to the variable w. +==== Part 1: Vector manipulation ====
  
-3. Change the third element of w to 10.+Relevant Matlab  
 +<code Matlab>​ 
 +[] % square brackets 
 +,  % row separator 
 +;  % col separator 
 +:  % colon operator 
 +' ​ % apostrophe 
 +linspace 
 +</​code>​
  
-4. Assign a column ​vector with the elements ​71-2to the variable ​z.+**1.** Assign a row vector with elements ​345to the variable ​u.
  
-5Add and zDoes the result make sense?+**2.** Assign the transpose of u to the variable ​w. 
  
-6Add u and z. Does the result make sense?+**3.** Change ​the third element of w to 10.
  
-7Create ​a vector ​of the even integers between ​and 14inclusive.+**4.** Assign ​column ​vector ​with the elements 7, 1, -2, 3 to the variable z.
  
-8Create a vector of the odd integers between 7 and 19, inclusive.+**5.** Add w and zDoes the result make sense?
  
-9What is the sum of every third number between 3 and 27, inclusive?+**6.** Add u and z. Does the result make sense?
  
-10What is the sum of the integers between ​and 100, inclusive?+**7.** Create a vector ​of the even integers between ​and 14, inclusive.
  
-11Make x a vector ​from 0 to $2\pi$ in increments ​of 0.02.+**8.** Create ​a vector of the odd integers between 7 and 19, inclusive.
  
-12Run ''​plot(x, sin(x))''​What happens?+**9.** Make a vector from 0 to $2\pi$ in increments of 0.02.
  
-13. Run ''​plot(x,​ sin(x), '​r--'​)''​. What happens?+==== Part 2: Computing sums ====
  
-14. Run +Relevant Matlab syntax 
 +<code matlab>​ 
 +:        % colon operator 
 +sum      % sum function 
 +.* ./ .^ % dot syntax 
 +</​code>​ 
 + 
 + 
 + 
 +**10.** What is the sum of every third number between 3 and 27, inclusive?​ 
 + 
 +**11.** What is the sum of the integers between 1 and 100, inclusive?​ 
 + 
 +**12.** The infinite series 
 + 
 +\begin{equation*} 
 +\sum_{n=1}^{N} \frac{1}{n} 
 +\end{equation*} 
 + 
 +diverges as $ 
 +N \rightarrow \infty$. Demonstrate this in Matlab by computing the sum for several values of $N$, e.g. $N=10$ to $N=10^5$ by powers of ten.  
 + 
 +**13.** The $\sin$ function can be calculated from the infinite series 
 + 
 +\begin{equation*} 
 +\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} 
 +\end{equation*} 
 + 
 +Of course we have to truncate this infinite sum to a finite number of terms in order to calculate it on a computer. How many terms do you need to keep in order to compute $\sin \: \pi/2 = 1$ to sixteen digits accuracy? 
 +Hint: use ''​format long''​ to see all sixteen digits of the computation. 
 + 
 +Are you amazed or what?  
 + 
 + 
 +**14.** Now use the same infinite series for $\sin x$ to calculate $\sin \: \pi = 0$. How many terms do you need to keep in order get the correct answer to sixteen digits accuracy? 
 + 
 +Are you perplexed or what? What is strange about this calculation?​ Can you explain what happened? 
 + 
 + 
 +==== Part 3: Plots ====
  
 +Relevant Matlab
 <code matlab> <code matlab>
-plot(x, sin(x), '​r--',​ x, cos(x), '​m-'​) +.* ./ .^  % dot syntax 
-xlabel('​x'​) +plot      % plot function 
-legend('​sin ​x', 'cos x')+axis      % set limits on plot or aspect ratio 
 +xlim      % set limits 
 +ylim      % set y limits 
 +grid      % turn grid on/off 
 +help      % help function
 </​code>​ </​code>​
  
-What happens?+**15.** Make a plot of the polynomial $f(x) = x^3 -5x^2 + 2x + 3$ as a blue line. In the same plot, draw a line along the $x$ axis. (Hint: in Matlab create a zero vector of the same length as your $x$ vector with ''​y=0*x'',​ then plot $y$ versus $x$ along with $f$ versus $x$.) Using this plot, estimate the zeros of the polynomial, i.e. the values of $x$ for which $f(x) = 0$. Make sure to find all the zeros of $f$ by adjusting limits of the plot until all intersection of $f$ with the $x$-axis are visible.  
 + 
 + 
 +**16.** Make a plot of a unit circle, i.e. a curve that satisfies $x^2 + y^2 = 1$. Draw the circle with a thick red line, label the axes, and give the plot a title. Make sure the circle looks like a circle and not an oval. Hint: don't try to draw the plot using the equation $x^2 + y^2 = 1$. Instead parameterize the curve in terms of the angle $\theta$, i.e. calculate $x$ and $y$ from $\theta$.
  
-15. Make plot of the polynomial $f(x) = x^3 -5x^2 + 2x + 3$ over the range $-\leq x \leq 5$. In the same plot, draw a line along the $x$ axis(Hint: in Matlab create a zero vector of the same length as your $x$ vector with ''​y=0*x''​then plot $y$ versus $x$ along with $f$ versus $x$.) Using this plot, estimate the zeros of the polynomial, i.ethe values of $x$ for which $f(x= 0$. +(I previously had problem 17, revisiting the sum of $1/n$...to be written. But on second thought, this problem belongs in lab 3So expect it there.)
  
gibson/teaching/spring-2018/math445/lab2.1517308594.txt.gz · Last modified: 2018/01/30 02:36 by gibson