User Tools

Site Tools


gibson:teaching:spring-2016:math445:lab5

====== Differences ====== This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
gibson:teaching:spring-2016:math445:lab5 [2016/02/18 08:34]
gibson
gibson:teaching:spring-2016:math445:lab5 [2016/02/18 08:36] (current)
gibson
Line 77: Line 77:
 ---- ----
  
-**Problem 7:** The formula for matrix-matrix multiplication $C = AB$ is +**Problem 7:** The formula for matrix-matrix multiplication $C = AB$ of an $m \times n$ matrix $A$ and an, $n \times p$ matrix $B$ is
  
 <​latex>​ <​latex>​
-C_{i,j} = \sum_{k=1}^n A_{ijx_j \quad \text{ for } i = 1,\dots,m, \text{ and } j = 1,\dots,p,+C_{i,j} = \sum_{k=1}^n A_{ik} B_{k,j} \quad \text{ for } i = 1,\dots,m, \text{ and } j = 1,\dots,p,
 </​latex>​ </​latex>​
  
-In this formula, $A$ is an $m \times n$ matrix, $B$ is an $n \times p$ matrix, and the product $C = AB$ is an $m \times p$ matrix.+The product $C = AB$ is an $m \times p$ matrix.
  
 Write a function ''​matmatmult''​ that takes a matrix $A$ and a vector $x$ as inputs, computes $C = AB$ according to that formula, and returns the matrix $C$. Compare your ''​matmatmult''​ to Matlab'​s built-in matrix-vector multiplication operator ''​*''​ on a random $4 \times 3$ matrix $A$ and a random $3 \times 5$ matrix B. Write a function ''​matmatmult''​ that takes a matrix $A$ and a vector $x$ as inputs, computes $C = AB$ according to that formula, and returns the matrix $C$. Compare your ''​matmatmult''​ to Matlab'​s built-in matrix-vector multiplication operator ''​*''​ on a random $4 \times 3$ matrix $A$ and a random $3 \times 5$ matrix B.
  
gibson/teaching/spring-2016/math445/lab5.1455813290.txt.gz ยท Last modified: 2016/02/18 08:34 by gibson