User Tools

Site Tools


gibson:teaching:spring-2016:math445:lab5

====== Differences ====== This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
gibson:teaching:spring-2016:math445:lab5 [2016/02/15 10:34]
gibson
gibson:teaching:spring-2016:math445:lab5 [2016/02/18 08:36] (current)
gibson
Line 27: Line 27:
 ---- ----
  
-**Problem 2:** If $F$ is a temperature in Farenheit, then $C = \frac{5}{9}(F-32)$ is the same temperature in Celsius. Write a function ''​farenheit2celsius''​ that takes a Celsius ​temperature as input, converts it to Celsius, prints a statement of the form ''​20 Farenheit is -6.6667 Celsius.'',​ and returns the Celsius value as its output. ​+**Problem 2:** If $F$ is a temperature in Farenheit, then $C = \frac{5}{9}(F-32)$ is the same temperature in Celsius. Write a function ''​farenheit2celsius''​ that takes a Farenheit ​temperature as input, converts it to Celsius, prints a statement of the form ''​20 Farenheit is -6.6667 Celsius.'',​ and returns the Celsius value as its output. ​
  
 ---- ----
Line 57: Line 57:
  
 \begin{equation*} \begin{equation*}
-\text{deviation}(x) = \sqrt{\frac{1}{N} \sum_{i=1}^N (x_i - \bar{X})^2}+\text{deviation}(x) = \sqrt{\frac{1}{N-1} \sum_{i=1}^N (x_i - \bar{X})^2}
 \end{equation*} \end{equation*}
  
Line 65: Line 65:
 ---- ----
  
-**Problem ​5:** The formula for matrix-vector multiplication $y = Ax$ is +**Problem ​6:** The formula for matrix-vector multiplication $y = Ax$ is 
  
 <​latex>​ <​latex>​
Line 75: Line 75:
 Write a function ''​matvecmult''​ that takes a matrix $A$ and a vector $x$ as inputs, computes $y = Ax$ according to that formula, and returns the vector $y$. Compare your ''​matvecmult''​ to Matlab'​s built-in matrix-vector multiplication operator ''​*''​ on a random $4 \times 4$ matrix and a random 4d column vector. Write a function ''​matvecmult''​ that takes a matrix $A$ and a vector $x$ as inputs, computes $y = Ax$ according to that formula, and returns the vector $y$. Compare your ''​matvecmult''​ to Matlab'​s built-in matrix-vector multiplication operator ''​*''​ on a random $4 \times 4$ matrix and a random 4d column vector.
  
-...to be continued...+---- 
 + 
 +**Problem 7:** The formula for matrix-matrix multiplication $C = AB$ of an $m \times n$ matrix $A$ and an, $n \times p$ matrix $B$ is 
 + 
 +<​latex>​ 
 +C_{i,j} = \sum_{k=1}^n A_{ik} B_{k,j} \quad \text{ for } i = 1,\dots,m, \text{ and } j = 1,​\dots,​p,​ 
 +</​latex>​ 
 + 
 +The product $C = AB$ is an $m \times p$ matrix. 
 + 
 +Write a function ''​matmatmult''​ that takes a matrix $A$ and a vector $x$ as inputs, computes $C = AB$ according to that formula, and returns the matrix $C$Compare your ''​matmatmult'' ​to Matlab'​s built-in matrix-vector multiplication operator ''​*''​ on a random $4 \times 3$ matrix $A$ and a random $3 \times 5$ matrix B. 
gibson/teaching/spring-2016/math445/lab5.1455561286.txt.gz · Last modified: 2016/02/15 10:34 by gibson