User Tools

Site Tools


gibson:teaching:spring-2015:math445:lab6

====== Differences ====== This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
gibson:teaching:spring-2015:math445:lab6 [2015/02/18 19:09]
gibson created
gibson:teaching:spring-2015:math445:lab6 [2015/02/25 09:03] (current)
spears
Line 1: Line 1:
 ====== Math 445 Lab 6 ====== ====== Math 445 Lab 6 ======
  
-**Problem 1:** Find all solutions of the equation $x^4 - 2x^3 -3x^2 + 5x - 4 =0$ in the following steps. Define a function $f(x) = x^4 - 2x^3 -3x^2 + 5x - 4$ using Matlab'​s anonymous function syntax. Define a vector x of gridpoints over some appropriate range using Matlab'​s ''​linspace''​ function. Plot $f(x)$ versus x and note the approximate values of x where $f(x) = 0$. Then use these approximate zeros of $f$ as initial guesses for calls to Matlab'​s ''​fsolve''​ function ​to find precise ​solutions. Plug each solution back into $f(x)$ to show that ''​fsolve''​ in fact produces numerically accurate solutions. ​+**Problem 1:** Find all solutions of the equation $x^4 - 2x^3 -3x^2 + 5x - 4 =0$ in the following steps. Define a function $f(x) = x^4 - 2x^3 -3x^2 + 5x - 4$ using Matlab'​s anonymous function syntax. Define a vector x of gridpoints over some appropriate range using Matlab'​s ''​linspace''​ function. Plot $f(x)$ versus x and note the approximate values of x where $f(x) = 0$. Then find precise solutions by calling ​Matlab'​s ''​fsolve''​ function ​with the approximate ​solutions ​as initial guesses. Plug each precise ​solution back into $f(x)$ to show that ''​fsolve''​ in fact produces numerically accurate solutions. ​
  
-**Problem 2:** Write an ''​f2c(f)''​ and a ''​c2f(c)''​ function that convert Farenheit ​tempeatures ​to Celsius and vice versa. Each function should print a statement of the form +---- 
 + 
 +**Problem 2:** Write an ''​f2c(f)''​ and a ''​c2f%%(c)%%''​ function that convert Farenheit ​temperatures ​to Celsius and vice versa. Each function should print a statement of the form 
  
   For input 32 F, the output is 0 C   For input 32 F, the output is 0 C
Line 11: Line 13:
   For input 100 C, the output is 212 F   For input 100 C, the output is 212 F
   ​   ​
-and then return the correct converted temperature. Write the functions in files ''​f2c.m''​ and ''​c2f.m''​. Make sure the functions are correct by checking that the above equivalent ​termperatures ​are converted correctly, and by computing ''​f2c(c2f(x))''​ and ''​c2f(f2c(x))''​ for a variety of values of ''​x''​.+and then return the correct converted temperature. Write the functions in files ''​f2c.m''​ and ''​c2f.m''​. Make sure the functions are correct by checking that the above equivalent ​temperatures ​are converted correctly, and by computing ''​f2c(c2f(x))''​ and ''​c2f(f2c(x))''​ for a variety of values of ''​x''​.
  
-Note: problems 3 +---- 
-**Problem ​4:** Write a function ''​mymean(x)''​ that compute ​the mean value of the elements in the input vector ''​x''​ according to the formula+Note: problems 3,4, and 5 use names like ''​mymean''​ to avoid conflicts with similar built-in Matlab functions. 
 + 
 +**Problem ​3:** Write a function ''​mymean(x)''​ that computes ​the mean value of the elements in the input vector ''​x''​ according to the formula
  
 \begin{eqnarray*} \begin{eqnarray*}
-\text{mean}(x) = \frac{1}{N} \sum_{i=N}^x_i+\text{mean}(x) = \frac{1}{N} \sum_{i=1}^x_i
 \end{eqnarray*} \end{eqnarray*}
  
-where N is the number of elements ​in the vector ''​x''​. Compute this sum with a ''​for''​ loop. Figure out a good way to test your function and test it.+where N is the number of elements. Compute this sum with a ''​for''​ loop. Figure out a good way to test your function and test it.
  
-**Problem ​5:** Write a function ''​mystd(x)''​ that computes the standard deviation of the elements in the input vector ''​x''​ according to the formula+**Problem ​4:** Write a function ''​mystd(x)''​ that computes the standard deviation of the elements in the input vector ''​x''​ according to the formula
  
 \begin{eqnarray*} \begin{eqnarray*}
-\text{std}(x) = \sqrt{\frac{1}{N} \sum_{i=N}^(x_i - \bar{x})^2}+\text{std}(x) = \sqrt{\frac{1}{N} \sum_{i=1}^(x_i - \bar{x})^2}
 \end{eqnarray*} \end{eqnarray*}
  
 where N is the number of elements in the vector ''​x''​ and $\bar{x}$ is the mean of ''​x''​. Figure out a good way to test your function and test it. where N is the number of elements in the vector ''​x''​ and $\bar{x}$ is the mean of ''​x''​. Figure out a good way to test your function and test it.
  
-**Problem ​6:** Write a function ''​mygeomean(x)''​ that computes the geometric mean of the elements in the input vector ''​x''​ according to the formula+**Problem ​5:** Write a function ''​mygeomean(x)''​ that computes the geometric mean of the elements in the input vector ''​x''​ according to the formula
  
 \begin{eqnarray*} \begin{eqnarray*}
-\text{geomean}(x) = \sqrt[N]{\prod_{i=N}^|x_i|}+\text{geomean}(x) = \sqrt[N]{\prod_{i=1}^|x_i|}
 \end{eqnarray*} \end{eqnarray*}
  
 +Figure out a good way to test your function and test it.
   ​   ​
gibson/teaching/spring-2015/math445/lab6.1424315358.txt.gz · Last modified: 2015/02/18 19:09 by gibson