User Tools

Site Tools


gibson:teaching:spring-2012:iam95:hw1

====== Differences ====== This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
gibson:teaching:spring-2012:iam95:hw1 [2012/02/29 09:20]
gibson [Problem 2]
gibson:teaching:spring-2012:iam95:hw1 [2012/02/29 10:25] (current)
gibson [Problem 2]
Line 48: Line 48:
 long-term stable equilibrium state predicted by the reduced-order model? long-term stable equilibrium state predicted by the reduced-order model?
  
-**(d)** Use a numerical ODE integration routine to integrate your ODE models from (a), (b)%%(c)%%+**(d)** Use a numerical ODE integration routine to integrate your ODE models from (b) and %%(c)%%
 and the time-integration code from problem 1 for the PDE, for $r=1/8$. For each model and the PDE simulation, and the time-integration code from problem 1 for the PDE, for $r=1/8$. For each model and the PDE simulation,
 produce phase plots of $a_3(t)$ versus $a_1(t)$ for a handful of initial conditions scattered in the  produce phase plots of $a_3(t)$ versus $a_1(t)$ for a handful of initial conditions scattered in the 
Line 55: Line 55:
 as well. You should see rapid approach to the center manifold followed by slow evolution on it. as well. You should see rapid approach to the center manifold followed by slow evolution on it.
  
-**(e)** How well do the ODE models and the reduced-order equilibrium ​match the asymptotic behavior of  +**(e)** How accurate are the ODE models and the reduced-order equilibrium ​in the long term, as a function ​ 
-the "​real"​ system ​as a function of $r$? Take the PDE simulation ​approximate ​the real" system +of $r$? Assume that the PDE simulation ​gives an accurate numerical solution of the Swift-Hohenberg ​ 
- +equationUsing the fixed initial condition $w(x,0) = 0.1 cos x + 0.1 cos 3x$, produce a log-log plot  
-Use a fixed initial condition $w(x,0) = 0.1 cos x + 0.1 cos 3x$ +of asymptotic ​error 
- +
-Compare the long-term behavior of the ODE models and the equilibrium state predicted by center ​ +
-manifold theory to the long-term PDE simulation for a variety of vale of $r$ +
- +
-the equilibrium state +
-predicted by center manifold theory, using a fixed initial condition $w(x,0) = 0.1 cos x + 0.1 cos 3x$ +
-but changing the value of $r$.  +
- +
- +
-and PDE integrations approach the equilibrium  +
-state predicted by the reduced-order model? Why or why not? Use the L2-norm long-term ​error+
  
 <​latex>​ <​latex>​
-err = \lim_{t \rightarrow \infty} \sqrt{ \int_0^{2\pi} |\hat{w}(x,​t) - w_{PDE}(x,t)|^2 dx}+err = \lim_{t \rightarrow \infty} \sqrt{ \int_0^{2\pi} |\hat{w}(x,​t) - w(x)|^2 dx}
 </​latex>​ </​latex>​
  
-to measure ​the accuracy ​of the models, where $\hat{w}$ is the model and $w_{EQB}$ is the  +versus $r$ where $w(x)$ is the asymptotic state of the PDE simulation and $\hat{w}$ is first the 
-equilibrium ​solution  +the ODE model from (b), second the reduced-order model from %%(c)%%, ​and third the reduced-order ​ 
-Produce a log-log plot of this error measure ​versus $r$ for each of the three ODE models +equilibrium. Plot these as three lines in log-log plot of error versus $r$. I suggest ​ 
-I suggest using $r = 1/16, 1/8, 1/4, 1/2,$ and $1$. +using $r = 1/16, 1/8, 1/4, 1/2,$ and $1$. 
  
-Note that the ODE systems for (a) and (b) will be stiff, in that the high-order coefficients evolve ​+Note that the ODE systems for (b) and %%(c)%% will be stiff, in that the high-order coefficients evolve ​
 very rapidly until the system equilibrates to and moves slowly on the center manifold. You might need to  very rapidly until the system equilibrates to and moves slowly on the center manifold. You might need to 
 use a stiff ODE integrator instead of the classic explicit schemes like RK4. use a stiff ODE integrator instead of the classic explicit schemes like RK4.
gibson/teaching/spring-2012/iam95/hw1.1330536047.txt.gz · Last modified: 2012/02/29 09:20 by gibson