User Tools

Site Tools


gibson:teaching:spring-2012:iam95:hw1

====== Differences ====== This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
gibson:teaching:spring-2012:iam95:hw1 [2012/02/28 14:12]
gibson
gibson:teaching:spring-2012:iam95:hw1 [2012/02/29 10:25] (current)
gibson [Problem 2]
Line 1: Line 1:
 ====== IAM 950 HW1 ====== ====== IAM 950 HW1 ======
  
-**Problem 1:** In class we derived via Taylor expansion the following approximation ​+=====Problem 1===== 
 + In class we derived via Taylor expansion the following approximation ​
 for the exponential growth rate $\sigma$ of a sinusoidal perturbation of wavenumber ​ for the exponential growth rate $\sigma$ of a sinusoidal perturbation of wavenumber ​
 $q$ for a Type I-s instability,​ near the critical wavenumber ($q \approx q_c$), and close  $q$ for a Type I-s instability,​ near the critical wavenumber ($q \approx q_c$), and close 
Line 21: Line 22:
 and use it to verify your answers to (b) with numerics. and use it to verify your answers to (b) with numerics.
  
 +=====Problem 2=====
  
----- +Derive the reduced-order ODE model for the Swift-Hohenberg equation just 
- +
- +
-**Problem 2:** Derive the reduced-order ODE model for the Swift-Hohenberg equation just +
 above threshhold and at critical wavenumber and compare its behavior to numerical simulations ​ above threshhold and at critical wavenumber and compare its behavior to numerical simulations ​
 of the PDE, in the following steps: of the PDE, in the following steps:
Line 45: Line 44:
 of ODEs in just $a_1$ and $a_3$. of ODEs in just $a_1$ and $a_3$.
  
-**%%(c)%%** Use Center Manifold Reduction to derive an algebraic model for $a_3$ in terms of $a_1$ +**%%(c)%%** Use Center Manifold Reduction to derive an algebraic model for $a_3$ in terms of $a_1$, and  
-to the first, and then use that result to form a reduced-order nonlinear evolution equation +then use that result to form a reduced-order nonlinear evolution equation for $a_1$ alone. ​What is the  
-for $a_1$ alone. ​+long-term stable equilibrium state predicted by the reduced-order model?
  
-**(d)** Use a numerical ODE integration routine to integrate your ODE models from (a), (b)and %%(c)%%  +**(d)** Use a numerical ODE integration routine to integrate your ODE models from (b) and %%(c)%% 
-for the initial condition $w(x,0) 0.cos x$ and compare them to the numerical solution produced ​ +and the time-integration code from problem 1 for the PDEfor $r=1/8$. For each model and the PDE simulation, 
-by the time-integration code for the PDE from problem 1We are interested ​in the long-term behavior,  +produce phase plots of $a_3(t)$ versus $a_1(t)$ for a handful of initial conditions scattered in the  
-so for the comparison, define ​the error of an ODE model as +$a_1, a_3$ plane. (If you used the complex Fourier representation,​ plot $Re a_3$ versus $Re a_1$ and 
 +choose real-valued initial conditions.) Plot the approximation of the center manifold on the phase plane 
 +as wellYou should see rapid approach to the center manifold followed by slow evolution on it. 
 + 
 +**(e)** How accurate ​are the ODE models and the reduced-order equilibrium ​in the long term, as a function ​ 
 +of $r$? Assume that the PDE simulation gives an accurate numerical solution of the Swift-Hohenberg  
 +equation. Using the fixed initial condition $w(x,0) = 0.1 cos x + 0.1 cos 3x$, produce a log-log plot  
 +of asymptotic error 
  
 <​latex>​ <​latex>​
-err = \lim_{t \rightarrow \infty} \sqrt{ \int_0^{2\pi} |w_{ODE}(x,t) - w_{PDE}(x,t)|^2 dx}+err = \lim_{t \rightarrow \infty} \sqrt{ \int_0^{2\pi} |\hat{w}(x,t) - w(x)|^2 dx}
 </​latex>​ </​latex>​
  
-Produce a log-log plot of this error measure ​versus $r$ for each of the three ODE models +versus $r$ where $w(x)$ is the asymptotic state of the PDE simulation and $\hat{w}$ is first the 
-I suggest using $r = 1/32, 1/16, 1/8, 1/4, 1/2,$ and $1$. +the ODE model from (b), second the reduced-order model from %%(c)%%, and third the reduced-order  
 +equilibrium. Plot these as three lines in log-log plot of error versus $r$. I suggest ​ 
 +using $r = 1/16, 1/8, 1/4, 1/2,$ and $1$.  
 + 
 +Note that the ODE systems for (b) and %%(c)%% will be stiff, in that the high-order coefficients evolve  
 +very rapidly until the system equilibrates to and moves slowly on the center manifold. You might need to  
 +use a stiff ODE integrator instead of the classic explicit schemes like RK4.
    
  
  
gibson/teaching/spring-2012/iam95/hw1.1330467146.txt.gz · Last modified: 2012/02/28 14:12 by gibson