User Tools

Site Tools


gibson:teaching:fall-2016:math753:newtondivdiff

====== Differences ====== This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
gibson:teaching:fall-2016:math753:newtondivdiff [2016/11/11 12:06]
gibson
gibson:teaching:fall-2016:math753:newtondivdiff [2016/11/11 12:15] (current)
gibson
Line 3: Line 3:
 Newton'​s Divided Difference algorithm is a slick way to compute an $N$th order polynomial interpolant to a set of $N+1$ data points $(x_0, y_0), (x_1, y_1), \ldots, (x_N, y_N)$ with distinct $x_i$'​s. ​ Newton'​s Divided Difference algorithm is a slick way to compute an $N$th order polynomial interpolant to a set of $N+1$ data points $(x_0, y_0), (x_1, y_1), \ldots, (x_N, y_N)$ with distinct $x_i$'​s. ​
  
-It produces a polynomial ​of in the form of [[gibson:​teaching:​fall-2016:​math753:​horner|Horner'​s method]] with base points, e.g. +It produces a polynomial in the form of [[gibson:​teaching:​fall-2016:​math753:​horner|Horner'​s method]] with base points, e.g. 
  
 \begin{equation*} \begin{equation*}
-P(x) = c_0 + (x - x_0) \, [c_1 + (x - x_1) [c_2 + (x - x_2) [c_3 + (x - x_3) \, c_4]]]+y = P(x) = c_0 + (x - x_0) \, [c_1 + (x - x_1) [c_2 + (x - x_2) [c_3 + (x - x_3) \, c_4]]]
 \end{equation*} \end{equation*}
  
-If we set $y = P(x)$ to the above equation (or its $N$th-order generalization) and plug in the data points $(x_i, y_i)$ for $i=0,​1,​\ldots,​ N$, we get a series of $N+1$ equations in the $N+1$ unknowns $c_0, \ldots c_N$.+If we plug in the data points $(x_i, y_i)$ for $i=0,​1,​\ldots,​ N$, to the $N$th-order generalization of the above equation, we get a series of $N+1$ equations in the $N+1$ unknowns $c_0, \ldots c_N$.
  
 \begin{eqnarray*} \begin{eqnarray*}
Line 32: Line 32:
 \end{equation*} \end{equation*}
  
-Lower-triangular systems can be solved easily via forward substitution. ​+Lower-triangular systems can be solved easily via forward substitution. It turns out that for this particular lower-triangular system, the solution can be computed easily by subtracting and dividing 
 +numbers in a table. To see how that works, please refer to [[https://​en.wikipedia.org/​wiki/​Newton_polynomial#​Application|Newton Divided Difference Application]] (wikipedia). 
 + 
 +Further reading: 
 + 
 +  * [[https://​en.wikipedia.org/​wiki/​Newton_polynomial#​Application|Newton Polynomial]] (wikipedia).
gibson/teaching/fall-2016/math753/newtondivdiff.1478894764.txt.gz · Last modified: 2016/11/11 12:06 by gibson