User Tools

Site Tools


gibson:teaching:fall-2016:iam961:hw1

====== Differences ====== This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
gibson:teaching:fall-2016:iam961:hw1 [2016/09/02 08:11]
gibson created
gibson:teaching:fall-2016:iam961:hw1 [2016/09/07 08:56] (current)
gibson
Line 1: Line 1:
 ====== IAM 961 HW1 ====== ====== IAM 961 HW1 ======
  
-**1** Prove that any linear map$\mathcal{L} : \mathbb{C}^n \rightarrow \mathbb{C}^m$ can  +**1.** Prove that any linear map $\mathcal{L} : \mathbb{C}^n \rightarrow \mathbb{C}^m$ can  
-written as an $m \times n$ matrix. ​You can assume ​the existence ​of an orthogonal basis for both  +written as an $m \times n$ matrix. ​(Hint: let $y = \mathcal{L}(x)$. Express $x$ as a linear combination of the canonical basis vectors $\{e_j\}$. Substitute that into $y = \mathcal{L}(x)$,​ then use linearity to rewrite ​the right-hand-side ​of this equation as a linear combination of vectors $\mathcal{L}(e_j)$. Now take the inner product of both sides of this equation with $e_i$. That should give you $y_i = \sum_{j=1}^n L_{ij} x_j$ for some matrix $L$.) 
-spaces+ 
 +**2.** Prove that $\|A B \|_p \leq \|A\|_p \|B\|_p$. 
 + 
 +**3.** If $u$ and $v$ are $m$-vectors the matrix $A = I + uv^*$ is known as a  
 +//rank-one perturbation of the indentity//​. Show that if $A$ is nonsingular,​ then its inverse  
 +has the form $A^{-1} = I + \alpha u v^*$ for some scalar $\alpha$, and give an expression 
 +for $\alpha$. For what $u$ and $v$ is $A$ singular? If it is singular, what is $\text{null}(A)$?​ 
 +(Trefethen exercise 2.6). 
gibson/teaching/fall-2016/iam961/hw1.1472829073.txt.gz · Last modified: 2016/09/02 08:11 by gibson