User Tools

Site Tools


gibson:teaching:fall-2014:math445:lecture6-diary

====== Differences ====== This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
gibson:teaching:fall-2014:math445:lecture6-diary [2014/09/18 11:35]
gibson
gibson:teaching:fall-2014:math445:lecture6-diary [2014/09/18 12:21] (current)
gibson [Graphical data analysis of log-linear relations]
Line 1: Line 1:
-====== Math 445 lecture 6logical array operations ​and log-linear relations ======+====== Math 445 lecture 6 ====== 
 + 
 +===== Finding twin primes using logical array operations =====
  
 <code matlab> <code matlab>
Line 133: Line 135:
 % Thus ends our homage to Yitang '​Tom'​ Zhang. I encourage you to  % Thus ends our homage to Yitang '​Tom'​ Zhang. I encourage you to 
 % view Tom's video on the MacArthur Foundation website. ​ % view Tom's video on the MacArthur Foundation website. ​
 +</​code>​
  
 +===== Summation of series examples =====
  
 +<code matlab>
 % ======================================================================= % =======================================================================
 % Now a couple examples of summing series, as compactly as possible % Now a couple examples of summing series, as compactly as possible
Line 182: Line 187:
 ans = ans =
      2      2
 +</​code>​
  
 +===== Graphical data analysis of log-linear relations =====
  
-======================================================================= +==== example 1: a linear relationship ​====
-% Ok. Let's move on the graphical data analysis+
  
 +<code matlab>
 % Load datafile '​data1.asc'​ into matlab with '​load'​ command % Load datafile '​data1.asc'​ into matlab with '​load'​ command
 >> D = load('​data1.asc'​); ​ >> D = load('​data1.asc'​); ​
Line 223: Line 230:
 >> grid on >> grid on
 </​code>​ </​code>​
 +
 +{{ :​gibson:​teaching:​fall-2014:​math445:​linearplot0.png?​direct&​400 |}} 
  
 <code matlab> <code matlab>
Line 236: Line 245:
 >> xlabel('​x'​);​ ylabel('​y'​) >> xlabel('​x'​);​ ylabel('​y'​)
 </​code>​ </​code>​
 +
 +{{ :​gibson:​teaching:​fall-2014:​math445:​linearplot1.png?​direct&​400 |}} 
  
 <code matlab> <code matlab>
Line 246: Line 257:
 >> plot(xdata, ydata, '​mo-',​ x, -0.49 * x + 18.5, '​b-'​);​ xlabel('​x'​);​ ylabel('​y'​);​ grid on; >> plot(xdata, ydata, '​mo-',​ x, -0.49 * x + 18.5, '​b-'​);​ xlabel('​x'​);​ ylabel('​y'​);​ grid on;
 </​code>​ </​code>​
 +
 +{{ :​gibson:​teaching:​fall-2014:​math445:​linearplot2.png?​direct&​400 |}} 
  
 <code matlab> <code matlab>
Line 253: Line 266:
 >> plot(xdata, ydata, '​mo-',​ x, -0.49 * x + 19, '​b-'​);​ xlabel('​x'​);​ ylabel('​y'​);​ grid on; >> plot(xdata, ydata, '​mo-',​ x, -0.49 * x + 19, '​b-'​);​ xlabel('​x'​);​ ylabel('​y'​);​ grid on;
 </​code>​ </​code>​
 +
 +{{ :​gibson:​teaching:​fall-2014:​math445:​linearplot3.png?​direct&​400 |}} 
  
 <code matlab> <code matlab>
-% Perfect! ​The functional relation between y and x is y = -0.49 x + 19+% Perfect! ​So the functional relation between y and x is y = -0.49 x + 19 
 +</​code>​
  
 +==== example 2: a log-linear relationship ====
 +
 +<code matlab>
 +% Load the next data file and try to figure out its y = f(x) relation. ​
 +>> D = load('​data3.asc'​);​
 +>> xdata = D(:,1);
 +>> ydata = D(:,2);
 +>> plot(xdata, ydata,'​mo-'​);​ xlabel('​x'​);​ ylabel('​y'​);​ grid on
 +</​code>​
 +
 +{{ :​gibson:​teaching:​fall-2014:​math445:​logplot0.png?​nolink&​400 |}}
 +
 +<code matlab>
 +% That looks exponential,​ so graph y logarithmically
 +>> semilogy(xdata,​ ydata, '​mo-'​);​ xlabel('​x'​);​ ylabel('​y'​);​ grid on
 +</​code>​
 +
 +{{ :​gibson:​teaching:​fall-2014:​math445:​logplot1.png?​nolink&​400 |}}
 +
 +<code matlab>
 +% Great! It's a straight line with y graphed logatithmically,​ so the relation is
 +% of the form 
 +%   log10 y = m x + b,   or equivalently
 +%         y = 10^(mx+b), or equivalently
 +%         y = c 10^(mx)
 +% for some constants m and c. let's take rough guesses, judging from the plot.
 +%
 +% m is the slope in log10 y versus x. log10 y drops from 2 at x=10 to about 1 at x=20.
 +% So m looks to be about -1/10, (rise of -1 over run of 10). You can get the constant c
 +% by estimating the value of y at x=0. That looks to be about c=400. So let's give
 +% y = 400 10^(-0.1 x) a try.
 +
 +>> x = linspace(-20,​ 50, 10);
 +>> semilogy(xdata,​ ydata,'​mo-',​ x, 400*10.^(-0.1*x));​ xlabel('​x'​);​ ylabel('​y'​);​ grid on
 +</​code>​
 +
 +{{ :​gibson:​teaching:​fall-2014:​math445:​logplot2.png?​nolink&​400 |}}
 +
 +<code matlab>
 +% Not too shabby. But the slope is a little too negative and y is too low at x=0. 
 +% A few iterations of adjusting the constants gives
 +
 +>> semilogy(xdata,​ ydata,'​mo-',​ x, 700*10.^(-0.085*x));​ xlabel('​x'​);​ ylabel('​y'​);​ grid on
 +</​code>​
 +
 +{{ :​gibson:​teaching:​fall-2014:​math445:​logplot3.png?​nolink&​400 |}}
 +
 +<code matlab>
 +% so the functional form is y = 700 * 10^(-0.085 x). 
  
-Ok, let's move on the the next data file and try to figure out its y = f(x) relation +Don't ask me why Matlab keeps changing the grid lines on the logarithmic plots... 
-D = load('​data3.asc'​);​ +
-x= D(:,1); +
-y=D(:,2); +
-plot(x,​y,'​mo-'​) +
-% looks exponential,​ so graph y logarithmically +
-semilogy(x,​y,'​mo-'​)+
 </​code>​ </​code>​
gibson/teaching/fall-2014/math445/lecture6-diary.1411065334.txt.gz · Last modified: 2014/09/18 11:35 by gibson