User Tools

Site Tools


gibson:teaching:fall-2014:math445:lecture10-diary

====== Differences ====== This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
gibson:teaching:fall-2014:math445:lecture10-diary [2014/10/17 09:44]
gibson
gibson:teaching:fall-2014:math445:lecture10-diary [2014/10/17 10:23] (current)
gibson
Line 13: Line 13:
 </​code>​ </​code>​
  
-Rewrite this with summation notation+We can also do the sum with a ''​for''​ loop. To see how to build the ''​for''​ loop, it's helpful to think of the series as a sequence of //partial sums//
 \begin{eqnarray*} \begin{eqnarray*}
-\frac{\pi^2}{6} ​\sum_{n=1}^{\infty} \frac{1}{n^2} ​+P_1 = 1 
 \end{eqnarray*} \end{eqnarray*}
-The Nth partial sum $P_N$ of the infinite series is  
 \begin{eqnarray*} \begin{eqnarray*}
-P_N = \sum_{n=1}^{N} \frac{1}{n^2} +P_2 = 1 \frac{1}{2^2}
 \end{eqnarray*} \end{eqnarray*}
-Then $\pi^2/6 = \lim_{\rightarrow ​\infty} P_N$.+\begin{eqnarray*} 
 +P_3 = 1 + \frac{1}{2^2} + \frac{1}{3^2}  
 +\end{eqnarray*} 
 +etc. Note that the difference between successive partial sums is a single term. 
 +\begin{eqnarray*} 
 +P_n = P_{n-1} + \frac{1}{n^2} 
 +\end{eqnarray*} 
 +So we can compute the $N$th partial sum $P_N$ by successively adding the term $1/n^2$ for n going from 1 to N. 
 + 
 +That's exactly we do when we compute the sum with a ''​for''​ loop.  
 +<code matlab>​ 
 +N=100; 
 +P=0; 
 +for n=1:N 
 +  P = P + 1/n^2; 
 +end 
 +</​code>​ 
 +At each step in the ''​for''​ loop, we compute $1/n^2$ for the current value of $n$, add it to the previously computed partial sum $P_{n-1}$, and then store the result into $P_n$. But, since we are only interested in the final value $P_N$, we just store the current value of the partial sum in the variable P and write over it with the next value each time we step through the loop 
 +  
 +  ​
  
-Now  
gibson/teaching/fall-2014/math445/lecture10-diary.1413564264.txt.gz · Last modified: 2014/10/17 09:44 by gibson