User Tools

Site Tools


gibson:teaching:fall-2014:math445:lecture10-diary

====== Differences ====== This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
gibson:teaching:fall-2014:math445:lecture10-diary [2014/10/15 12:55]
gibson
gibson:teaching:fall-2014:math445:lecture10-diary [2014/10/17 10:23] (current)
gibson
Line 1: Line 1:
 ====== Math 445 lecture 10: more ''​for''​ ====== ====== Math 445 lecture 10: more ''​for''​ ======
  
-Here'​s ​a in finite series  ​for $pi^2/6$+The following example problem spells out in great detail how to translate ​formula ​in summation notation into a Matlab ''​for''​ loop.
  
  
 +Recall this classic formula for $\pi^2/6$ due to Euler:
 \begin{eqnarray*} \begin{eqnarray*}
-\frac{\pi^2}{6} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{5^2} +  \ldots ​+\frac{\pi^2}{6} = \sum_{n=1}^{\infty} \frac{1}{n^2} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{5^2} +  \ldots ​
 \end{eqnarray*} \end{eqnarray*}
 +We can sum the first N terms of this series with the Matlab one-liner
 +<code matlab>
 +N=100; sum((1:​N).^(-2))
 +</​code>​
 +
 +We can also do the sum with a ''​for''​ loop. To see how to build the ''​for''​ loop, it's helpful to think of the series as a sequence of //partial sums//
 +\begin{eqnarray*}
 +P_1 = 1 
 +\end{eqnarray*}
 +\begin{eqnarray*}
 +P_2 = 1 + \frac{1}{2^2}
 +\end{eqnarray*}
 +\begin{eqnarray*}
 +P_3 = 1 + \frac{1}{2^2} + \frac{1}{3^2} ​
 +\end{eqnarray*}
 +etc. Note that the difference between successive partial sums is a single term.
 +\begin{eqnarray*}
 +P_n = P_{n-1} + \frac{1}{n^2}
 +\end{eqnarray*}
 +So we can compute the $N$th partial sum $P_N$ by successively adding the term $1/n^2$ for n going from 1 to N.
 +
 +That's exactly we do when we compute the sum with a ''​for''​ loop. 
 +<code matlab>
 +N=100;
 +P=0;
 +for n=1:N
 +  P = P + 1/n^2;
 +end
 +</​code>​
 +At each step in the ''​for''​ loop, we compute $1/n^2$ for the current value of $n$, add it to the previously computed partial sum $P_{n-1}$, and then store the result into $P_n$. But, since we are only interested in the final value $P_N$, we just store the current value of the partial sum in the variable P and write over it with the next value each time we step through the loop. 
 + 
 +  ​
 +
gibson/teaching/fall-2014/math445/lecture10-diary.1413402902.txt.gz ยท Last modified: 2014/10/15 12:55 by gibson