User Tools

Site Tools


gibson:teaching:fall-2014:math445:lecture10-diary

====== Differences ====== This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
gibson:teaching:fall-2014:math445:lecture10-diary [2014/10/15 12:53]
gibson
gibson:teaching:fall-2014:math445:lecture10-diary [2014/10/17 10:23] (current)
gibson
Line 1: Line 1:
 ====== Math 445 lecture 10: more ''​for''​ ====== ====== Math 445 lecture 10: more ''​for''​ ======
  
-Here'​s ​a in finite series  ​for $pi^2/6$+The following example problem spells out in great detail how to translate ​formula ​in summation notation into a Matlab ''​for''​ loop.
  
 +
 +Recall this classic formula for $\pi^2/6$ due to Euler:
 \begin{eqnarray*} \begin{eqnarray*}
-& & \frac{3}{4 \pi}   ​\sqrt{4 \cdot x^2   12}\\ +\frac{\pi^2}{6\sum_{n=1}^{\infty} ​\frac{1}{n^2} = 1 + \frac{1}{2^2} + \frac{1}{3^2\frac{1}{4^2} + \frac{1}{5^2} +  \ldots 
-& & \lim_{n \to \infty} +
-  ​\sum_{k=1}^\frac{1}{k^2} = \frac{\pi^2}{6}\\ +
-& & {\it f}(x) = \frac{1}{\sqrt{xx^2}\\ +
-& & e^{i \pi} + 1 = 0\;+
 \end{eqnarray*} \end{eqnarray*}
 +We can sum the first N terms of this series with the Matlab one-liner
 +<code matlab>
 +N=100; sum((1:​N).^(-2))
 +</​code>​
  
 +We can also do the sum with a ''​for''​ loop. To see how to build the ''​for''​ loop, it's helpful to think of the series as a sequence of //partial sums//
 \begin{eqnarray*} \begin{eqnarray*}
-\pi^2/6 = 1 + 1/2^2 + 1/3^2 + 1/4^2 + 1/5^2 + \ldots ​ +P_1 = 1  
-\end{eqnarry*}+\end{eqnarray*} 
 +\begin{eqnarray*} 
 +P_2 = 1 + \frac{1}{2^2
 +\end{eqnarray*} 
 +\begin{eqnarray*} 
 +P_3 = 1 + \frac{1}{2^2\frac{1}{3^2}  
 +\end{eqnarray*} 
 +etc. Note that the difference between successive partial sums is a single term. 
 +\begin{eqnarray*} 
 +P_n = P_{n-1} ​\frac{1}{n^2} 
 +\end{eqnarray*} 
 +So we can compute the $N$th partial sum $P_N$ by successively adding the term $1/n^2$ for n going from 1 to N. 
 + 
 +That's exactly we do when we compute the sum with a ''​for''​ loop.  
 +<code matlab>​ 
 +N=100; 
 +P=0; 
 +for n=1:N 
 +  P = P + 1/n^2; 
 +end 
 +</​code>​ 
 +At each step in the ''​for''​ loop, we compute $1/n^2$ for the current value of $n$, add it to the previously computed partial sum $P_{n-1}$, and then store the result into $P_n$. But, since we are only interested in the final value $P_N$, we just store the current value of the partial sum in the variable P and write over it with the next value each time we step through the loop.  
 +  
 +   
gibson/teaching/fall-2014/math445/lecture10-diary.1413402804.txt.gz · Last modified: 2014/10/15 12:53 by gibson