User Tools

Site Tools


gibson:teaching:fall-2014:math445:lab4

====== Differences ====== This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
gibson:teaching:fall-2014:math445:lab4 [2014/10/20 10:59]
gibson
gibson:teaching:fall-2014:math445:lab4 [2014/10/25 05:01] (current)
gibson
Line 1: Line 1:
-**Problem 1:** Write a function ''​x = newtonsearch(f,​ xguess)''​ that finds the solution ​''​x'' ​of the equation ​''​f(x) == 0'' ​for an input function ''​f''​ and an initial guess ''​xguess''​ using the Newton search algorithm. ​+**Problem 1:** Write a function ''​x = newtonsearch(f,​ xguess)''​ that finds the solution ​$xof the equation ​$f(x) == 0for an input function ''​f''​ and an initial guess ''​xguess''​ using the Newton search algorithm. ​
  
-  - Use a ''​for''​ loop to perform the Newton-search iteration ​$x_{n+1} = x_n + dx$. Take up to ten Newton steps. +  - Use a ''​for''​ loop to perform the Newton-search iteration. Take up to ten Newton steps. 
-  - Use a ''​if''​ statement inside the ''​for''​ loop to test if either $|f(x)| < tolerance$ or $|dx| < tolerance$. If so, use a ''​break''​ statement to terminate the iteration and return from the function. For our purposes ​$10^{-7}$ is a decent choice for $tolerance$. ​+  - Use a ''​if''​ statement inside the ''​for''​ loop to test if either $|f(x)| < 2 \epsilon$ or $|dx| < \epsilon$. If so, use a ''​break''​ statement to terminate the iteration and return from the function. For our purposes ​''​1e-07'' ​is a decent choice for the value of tolerance ​$\epsilon$. 
       ​       ​
  
Line 11: Line 11:
 plugging the answer ''​x''​ back into ''​f''​ and verifying that ''​f(x)''​ is approximately zero. plugging the answer ''​x''​ back into ''​f''​ and verifying that ''​f(x)''​ is approximately zero.
  
-**(a)** Find an ''​x''​ for which $x^3 - 7x - 13 = 0$. +**(a)** Find an ''​x''​ for which  
 + 
 +\begin{eqnarray*} 
 +x^3 - 7x - 13 = 0 
 +\end{eqnarray*} ​
  
 **(b)** Find the cube root of 54. (Hint: devise an equation whose answer is $x = \sqrt[3]{72}$.) **(b)** Find the cube root of 54. (Hint: devise an equation whose answer is $x = \sqrt[3]{72}$.)
  
-**%%(c)%%** Find an ''​x''​ for which $\sqrt{4-x^2} = x \tan x$.+**%%(c)%%** Find an ''​x''​ for which $\sqrt{3-x^2} = x \tan x$.
  
 Hint: find good initial guesses for the Newton search by plotting each function and roughly ​ Hint: find good initial guesses for the Newton search by plotting each function and roughly ​
gibson/teaching/fall-2014/math445/lab4.1413827970.txt.gz · Last modified: 2014/10/20 10:59 by gibson