User Tools

Site Tools


gibson:teaching:fall-2013:math445:lecture11

====== Differences ====== This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
gibson:teaching:fall-2013:math445:lecture11 [2013/10/09 19:17]
gibson
gibson:teaching:fall-2013:math445:lecture11 [2013/10/09 19:27] (current)
gibson
Line 3: Line 3:
 Below are two sample codes for making contour plots of a  Below are two sample codes for making contour plots of a 
 function of two variables. In the first sample code, the function of two variables. In the first sample code, the
-function f is expressed as a function of two separate scalar ​ +function ​$f(x,y) = x^2 + y^2$ is expressed as a function ​ 
-variables x and y.+of two separate scalar variables x and y.
  
 <​code>​ <​code>​
Line 34: Line 34:
 </​code>​ </​code>​
  
-The second script ​expresses f as a function of a vector variable x.+The second script ​suggests ​good initial guess for zeros of  
 +the function ​ 
 + 
 +<​latex>​ 
 +f\left(\begin{array}{c} x_1 \\ x_2 \end{array}}\right) =  
 +\left(\begin{array}{l} x_1^2 + x_2^2 - 7 \\ x_1^{-1} - x_2 \end{array} \right) 
 +</​latex>​ 
 + 
 +i.e. points $x$ for which $f(x) = 0$. The script plots contour lines near $f_1=0$ and $f_2=0$.  
 +The intersection ​of these curves are points where both components of $f$ are near zero, and  
 +so serve as good guesses for Newton search.
  
 <​code>​ <​code>​
gibson/teaching/fall-2013/math445/lecture11.1381371476.txt.gz · Last modified: 2013/10/09 19:17 by gibson