User Tools

Site Tools


gibson:teaching:fall-2013:math445:lab5

====== Differences ====== This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
gibson:teaching:fall-2013:math445:lab5 [2013/09/23 19:23]
gibson
gibson:teaching:fall-2013:math445:lab5 [2013/10/03 05:42] (current)
gibson
Line 2: Line 2:
  
 Helpful Matlab commands/​functions/​constructs for this lab:  Helpful Matlab commands/​functions/​constructs for this lab: 
-''​while-end'',​ ''​abs'',​ ''​plot'',​ ''​grid on'', ​'''​for-end'',​ ''​%%\%%'',​ ''​contour'',​ ''​norm'',​ and anonymous functions.+''​while-end'',​ ''​abs'',​ ''​plot'',​ ''​grid on'',​ ''​for-end'',​ ''​%%\%%'',​ ''​contour'',​ ''​norm'',​ and anonymous functions.
  
 **Problem 1:** Write a ''​newtonsearch1d''​ function that computes a zero of a  **Problem 1:** Write a ''​newtonsearch1d''​ function that computes a zero of a 
Line 27: Line 27:
 a 2-d function ''​f''​ starting from the initial guess ''​x'',​ where both ''​x''​ a 2-d function ''​f''​ starting from the initial guess ''​x'',​ where both ''​x''​
 and ''​f(x)''​ are two-dimensional vectors. Use this to find a zero of the  and ''​f(x)''​ are two-dimensional vectors. Use this to find a zero of the 
-nonlinear function+nonlinear ​2-d function
  
 <​latex>​ <​latex>​
 f\left(\begin{array}{c} x_1 \\ x_2 \end{array}}\right) =  f\left(\begin{array}{c} x_1 \\ x_2 \end{array}}\right) = 
-\left(\begin{array}{c} x_1^2 + x_2^2 - 7 \\ x_1^{-1} - x(2) \end{array} \right)+\left(\begin{array}{l} x_1^2 + x_2^2 - 7 \\ x_1^{-1} - x_2 \end{array} \right)
 </​latex>​ </​latex>​
  
-Use a contour plot of the norm of ''​f'' ​over ''​x(1)x(2)'' ​to find an +Use a contour plot of the norm of $fover $x_1x_2$ to find an 
 initial guess for the search. initial guess for the search.
  
-**Problem 3:** Write a ''​newtonsearchNd''​ function that finds a zero of+**Bonus (10 pts):** Write a ''​newtonsearchNd''​ function that finds a zero of
 an N-dimensional function ''​f''​ starting from the initial guess ''​x''​. ​ an N-dimensional function ''​f''​ starting from the initial guess ''​x''​. ​
 +Use this to find a zero of the nonlinear 3d function
  
 +<​latex>​
 +f\left(\begin{array}{c} x \\ y \\ z \end{array}}\right) = 
 +\left(\begin{array}{l} 10(y-x) \\ x(28-z) - y \\ xy - 8/3 \; z \end{array} \right)
 +</​latex>​
 +
 +Use the initial guess $[x,y,z] = [10, 10, 25]$.  Verify your answer by applying it to the 3d function. What do you expect to get?
 +
 +** Bonus (10 points): **
 +Give a brief explanation for the Newton'​s Search. Include the answers to the following questions.
 +
 +** - ** Purpose: What is the Newton'​s method used for?
 +
 +** - ** Method: How does it do this? (How is it related to the Taylor Series? Can you explain the equations used in the code?)
gibson/teaching/fall-2013/math445/lab5.1379989400.txt.gz · Last modified: 2013/09/23 19:23 by gibson