User Tools

Site Tools


gibson:teaching:fall-2013:math445:exam1solns

====== Differences ====== This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
gibson:teaching:fall-2013:math445:exam1solns [2013/10/28 13:06]
gibson created
gibson:teaching:fall-2013:math445:exam1solns [2013/10/29 06:14] (current)
gibson
Line 62: Line 62:
 </​latex>​ </​latex>​
  
 +  A = [ 3 1 2; -1 0 9; -4 5 0];
 +  b = [6; 8; 1];
 +  x = A\b
 +  ​
 +**9.** ​ Write a Matlab function that computes the mean (i.e. average) of 
 +the components of a vector $x$ according to the formula ​
 +
 +<​latex>​
 +  \text{mean}(x) = (1/N) \sum_{i=1}^{N} x_i
 +</​latex>​
 +
 +where $N$ is the length of the vector. Your function should evaluate this 
 +sum directly instead of using the Matlab %%sum%% or %%mean%% functions.
 +
 +  function m = mean(x)
 +  % compute mean of vector x
 +  ​
 +    m = 0;
 +    N = length(x);
 +    ​
 +    for i=1:N
 +      m = m + x(i);
 +    end
 +    ​
 +    m = m/N;
 +  end
 +  ​
 +**10.** ​ Write a Matlab function that takes an $M \times M$  transition ​
 +matrix $T$ for a network of $M$ web pages and returns the page rank vector $p$ 
 +of the steady-state distribution of visitors to each page. The page rank is 
 +given by $p = T^n e$, where $e$ is an arbitrary $M$-vector whose components ​
 +sum to 1, and $n$ is large number. You can set $n$ to 100.
 +    ​
 +  function p = pagerank(T);​
 +  % compute that page rank vector for transition matrix T
 +  ​
 +    [M,M] = size(T);
 +  ​
 +    e = zeros(M,1);
 +    e(1) = 1;
 +    ​
 +    n=100;
 +    ​
 +    p = T^n * e;
 +    ​
 +  end
 +  ​
  
   ​   ​
gibson/teaching/fall-2013/math445/exam1solns.1382990801.txt.gz ยท Last modified: 2013/10/28 13:06 by gibson