User Tools

Site Tools


gibson:teaching:fall-2012:math445:pf1

====== Differences ====== This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
gibson:teaching:fall-2012:math445:pf1 [2012/12/05 12:33]
gibson
gibson:teaching:fall-2012:math445:pf1 [2012/12/05 13:23] (current)
gibson
Line 40: Line 40:
 network of websites. network of websites.
  
-  <network-of-links figure here> +{{:​gibson:​teaching:​fall-2012:​math445:​network2.png?​direct&​300}}
  
 15. Write Matlab code that converts the connectivity matrix //C// to a  15. Write Matlab code that converts the connectivity matrix //C// to a 
Line 53: Line 52:
  
  
-17. Write an equation for //y// as a function of //x//  for +17. Write an equation for //y// as a function of //x// for 
-the following data plot+the following data plot. Bonus: express exponential functions  
 +as powers of //e// rather than powers of 10. Use $e^{2.3}\approx 10$  
 +to convert between the two.    
 + 
 + ​{{:​gibson:​teaching:​fall-2012:​math445:​fig1.png?​direct&​300}}
  
-  <data plot goes here> 
  
  
Line 93: Line 95:
 where $g = 9.81, ~\mu =0.35$, $y$ represents the vertical position, and where $g = 9.81, ~\mu =0.35$, $y$ represents the vertical position, and
 $v_y$ represents the vertical velocity. Represent the two free variables $v_y$ represents the vertical velocity. Represent the two free variables
-with the vector $x = [y, v_y]$ and reexpress the two equations above as+with the vector $x = [y, ~v_y]$ and reexpress the two equations above as
 an ODE system of the form an ODE system of the form
  
 $dx/dt = f(x)$  $dx/dt = f(x)$ 
  
-Note that both sides of this equation are vectors: $dx/dt = [dx_1/dt, dx_2/dt]$ and  +Note that both sides of this equation are vectors: $dx/dt = [dx_1/​dt, ​~dx_2/dt]$ and  
-$f(x) = [f_1(x_1, x_2), f_2(x_1, ​x2)]$. Your job is to find the functions $f_1$ and $f_2$.+$f(x) = [f_1(x_1, x_2), ~f_2(x_1, ​x_2)]$. Your job is to find the functions $f_1$ and $f_2$.
  
 Write an anonymous function in Matlab that computes $dx/dt = f(x)$ for an input vector $x$,  Write an anonymous function in Matlab that computes $dx/dt = f(x)$ for an input vector $x$, 
Line 115: Line 117:
  
 <​latex>​ <​latex>​
-y_i = \sum_{j=1} A_{ij} x_j+y_i = \sum_{j=1}^N A_{ij} x_j
 </​latex>​ </​latex>​
  
-for each component $y_i$ of the //M// dimensional vector $y$. But don't that  +for each component $y_i$ of the //M// dimensional vector $y$. But don'​t ​code that  
-formula directly! Instead start your code with+formula directly! Instead start your function ​with
  
 <​code>​ <​code>​
Line 126: Line 128:
 </​code>​ </​code>​
  
-and write the matrix-vector multiplication as a loop over the $Knonzero elements +and write the matrix-vector multiplication as a loop over the K nonzero elements 
-of $A$+of A. 
gibson/teaching/fall-2012/math445/pf1.1354739621.txt.gz · Last modified: 2012/12/05 12:33 by gibson