====== Differences ====== This shows you the differences between two versions of the page.
Both sides previous revision Previous revision Next revision | Previous revision | ||
gibson:teaching:fall-2012:math445:lab3 [2012/09/12 13:10] gibson [Problem F] |
gibson:teaching:fall-2012:math445:lab3 [2012/12/05 09:11] (current) gibson [Problem F] |
||
---|---|---|---|
Line 148: | Line 148: | ||
<latex> | <latex> | ||
- | \lim_{n\rightarrow \infty} (1 + 0.754/n)^nn = e^{0.754} | + | \lim_{n\rightarrow \infty} (1 + 0.754/n)^n= e^{0.754} |
</latex> | </latex> | ||
Line 209: | Line 209: | ||
<latex> | <latex> | ||
- | log(ab) = log(a) + log(b), \text{ for } a = 0.1, b = 5 | + | \log(ab) = \log(a) + \log(b), \text{ for } a = 0.1, b = 5 |
</latex> | </latex> | ||
<latex> | <latex> | ||
- | log(a^b) = b log(a), \text{ for } a = 3, b = 3 | + | \log(a^b) = b \log(a), \text{ for } a = 3, b = 3 |
</latex> | </latex> | ||
Note the ''log'' function in matlab is the natural logarithm. How would you | Note the ''log'' function in matlab is the natural logarithm. How would you | ||
- | calculate $\log_{10}$ , $log_2$ , or $log_5$? | + | calculate $\log_{10}$ , $\log_2$ , or $\log_5$? |